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XVIII. Mean and Variance for Continuous
Distributions

Mean

« Let Y be a continuous random variable. We
can calculate its mean, also known as its
expected value:

p=EY):= /OO yf(y)dy

« Asin the discrete case, expectation is linear:

1. E(c)=c
2 E(Yi+Y5) = E(V)) + E (Y))
3. E(cY)=cE(Y)

Variance

« By definition, the variance is

>=V(Y) = E[(Y—p)’]
= [ w-wrrway

« However, as in the discrete case, it is usually
easier to calculate via the mean:

o> = E(Y?) -EY)

= (/_Z v’ f(y) dy) —
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Standard Deviation

« As in the discrete case, we compute the
standard deviation from the variance:

o :=+/V(Y)

Example I

As in Example III of the previous video, let Y
have density function

Find E(Y).
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Example 11
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Let 8, < 65 be constants and consider the uniform
density function

1
=—- 60 <y < b,

Find E(Y).

(We predict p =

p=EY) = /OO uf(y)dy

02 1
= d
\/9\1 y62_01 y

1 y2 y=>02

Oy — 6, 2
62 — 2
2(0: — 01)
6, + 6,

y=01

Example II1

Let 8, < 65 be constants and consider the uniform
density function

1
= <y <06,

Find V (V).
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o? = / v fy) dy — i’
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Example IV

Let Y have density function

1
f(y) — E(Q_y)a 0§y§27

0, elsewhere.

Find E(Y).
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Example V
Let Y have density function

1
5(2-y), 0<y<2

0, elsewhere.

fly) =
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o> = E(Y?)-E{Y) EY) = ; from Example



